If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x/x^2+36=0
Domain of the equation: x^2!=0We multiply all the terms by the denominator
x^2!=0/
x^2!=√0
x!=0
x∈R
2x+36*x^2=0
We add all the numbers together, and all the variables
36x^2+2x=0
a = 36; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·36·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*36}=\frac{-4}{72} =-1/18 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*36}=\frac{0}{72} =0 $
| x+90+143=180 | | 11.4-05x=9.9-0.6x | | -72.85=-4.7x | | 55,000+2500x=27.7-0.375x | | 5x9=-3x+4 | | 2+2.1x=-8.3+6.1x | | x²-10=x²-98 | | (x+20)+(5x+4)=180° | | D=-16t^+196 | | 53695=2*1.15^a | | 53695=21.15^a | | 7=4x+323 | | Y=100+0.3(Y-100)+150+0.2Y-1000i | | 355-5x=2-x | | 1x=+3 | | H(3t)=-16t^2+40 | | H(3t)=-16^2t+40 | | 9=19-p | | 49-x+37+69=180 | | y=57.14(+8)+28.57=-314.27 | | 200+8x=12x | | 15yy=4 | | H(3t)=-16^2+40 | | (3x-5)=(3x-5) | | 5x+16+6x-7=190 | | 5x+16+6x-7=90 | | 180=2x(3x-5) | | 2-6|-4x|=20 | | (8x+11)+131=180 | | 0.25x+5=03.5x+2 | | 12x=5-17x | | 25-2z-10z=-3{4z+8-1 |